Efficient Removal of Representative Chemical Agents by Rapid and Sufficient Adsorption via Magnetic Graphene Oxide Composites

نویسندگان

چکیده

Chemical agents pose a significant threat to social security, highlighting the crucial role of representative chemical adsorption in ensuring safety our environment. This study explored application Magnetic Graphene Oxide Nanoplatelet Composites (MGONCs) adsorbing such as Lewisite (L), O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX), Sarin (GB), and Soman (GD). MGONCs were synthesized through physical blending method, with combination graphene oxide (GO) Fe3O4 nanoparticles at mass ratio 1:1. Optimization process involved investigating effects contact time, temperature, adsorbent dosage. Remarkably, rate L VX exceeded 99% when dosage was 2.5 mg, time 30 s room temperature. Furthermore, GB GD achieved maximum rates after 20 min, dosages 10 mg respectively. Characterization magnetic composite accomplished XRD, TEM, VSM, FTIR, TGA, BET analyses. Kinetical analysis revealed that mechanism on followed pseudo-second-order (PSO) kinetics, exhibiting high regression coefficient. The calculated qe values 0.103125 mg/g 0.081349 mg/g, research demonstrated feasibility utilizing highly efficient adsorbents for agents, particularly on-site sampling scenarios.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamic study of (pb2+) removal by adsorption onto modified magnetic Graphene Oxide with Chitosan and Cysteine

A new modified magnetic Graphene Oxide with Chitosan and Cysteine wassynthesized for removing Pb2+ ions from aqueous solution. The properties of thisadsorbent were characterized by Field Emission Scanning Electron Microscopy (FESEM),Vibrating Sample Magnetometer (VSM) and Energy Dispersive Analysis Systemof X-ray (EDAX). Physicochemical parameters such as effect of pH, c...

متن کامل

Synthesis of Magnetic Graphene Oxide ‎Nanocomposite for Adsorption Removal of ‎Reactive Red 195: Modelling and ‎Optimizing via Central Composite Design

   In this work, magnetic graphene oxide (MGO) was prepared by in situ synthesis of magnetite nanoparticles in the presence of graphene oxide (GO). The prepared nanocomposite was characterized by applying scanning electron microscopy (SEM), X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). MGO was applied as an ...

متن کامل

Adsorption and removal of triphenylmethane dyes from water by magnetic reduced graphene oxide.

Triphenylmethane (TPM) dye is one of the most prevalent and recalcitrant water contaminants. Magnetic reduced graphene oxide (rGO) is an efficient adsorbent for organic pollutants removal. However, the performance and adsorption kinetics of magnetic rGO towards TPM have not yet been studied. In this study, a magnetic Fe3O4@rGO nano-composite, which could be easily removed from water with a simp...

متن کامل

Hydrogen adsorption by g-C3N4 and graphene oxide nanosheets

The adsorption behavior of hydrogen for synthesized graphitic carbon nitride (g-C3N4) and graphene oxide nanosheets was compared. The structure of the prepared g-C3N4 and graphene oxide samples were studied using TEM, FT-IR spectroscopy and surface area analysis. Textural results of the prepared nanosheets show that the surface area, total pore volume, and average internal diameter of g-C3N4 an...

متن کامل

Enhanced removal performance of arsenate and arsenite by magnetic graphene oxide with high iron oxide loading.

Magnetic iron oxide/graphene oxide (MGO) with high iron loading (51 wt%) has been successfully synthesized using the co-precipitation method, and then used as adsorbents for the removal of arsenate and arsenite from aqueous solutions. The resulting MGO possesses desirable magnetic properties (12.8 emu g(-1)) and excellent adsorption properties for the removal of As(III) and As(IV) with signific...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2023

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app131910731